Properties of nanocones formed on a surface of semiconductors by laser radiation: quantum confinement effect of electrons, phonons, and excitons
نویسندگان
چکیده
On the basis of the analysis of experimental results, a two-stage mechanism of nanocones formation on the irradiated surface of semiconductors by Nd:YAG laser is proposed for elementary semiconductors and solid solutions, such as Si, Ge, SiGe, and CdZnTe. Properties observed are explained in the frame of quantum confinement effect. The first stage of the mechanism is characterized by the formation of a thin strained top layer, due to redistribution of point defects in temperature-gradient field induced by laser radiation. The second stage is characterized by mechanical plastic deformation of the stained top layer leading to arising of nanocones, due to selective laser absorption of the top layer. The nanocones formed on the irradiated surface of semiconductors by Nd:YAG laser possessing the properties of 1D graded bandgap have been found for Si, Ge, and SiGe as well, however QD structure in CdTe was observed. The model is confirmed by "blue shift" of bands in photoluminescence spectrum, "red shift" of longitudinal optical line in Raman back scattering spectrum of Ge crystal, appearance of Ge phase in SiGe solid solution after irradiation by the laser at intensity 20 MW/cm2, and non-monotonous dependence of Si crystal micro-hardness as function of the laser intensity.
منابع مشابه
Exciton quantum confinement in nanocones formed on a surface of CdZnTe solid solution by laser radiation
The investigation of surface morphology using atomic force microscope has shown self-organizing of the nanocones on the surface of CdZnTe crystal after irradiation by strongly absorbed Nd:YAG laser irradiation at an intensity of 12.0 MW/cm2. The formation of nanocones is explained by the presence of a thermogradient effect in the semiconductor. The appearance of a new exciton band has been obse...
متن کاملFormation mechanisms of nano and microcones by laser radiation on surfaces of Si, Ge, and SiGe crystals
In this work we study the mechanisms of laser radiation interaction with elementary semiconductors such as Si and Ge and their solid solution SiGe. As a result of this investigation, the mechanisms of nanocones and microcones formation on a surface of semiconductor were proposed. We have shown the possibility to control the size and the shape of cones both by the laser. The main reason for the ...
متن کاملSize Effect on the Photoluminescence Shift in Wide Band-Gap Material: A Case Study of SiO2-Nanoparticles
In this article, I will discuss the optical properties of SiO2-nanoparticles that we have investigated recently by photoluminescence (PL) spectroscopy. In particular, I will show the blue-shifts of PL, originating from the electron-hole recombination of the self-trapped exciton (STE), observed in smaller-sized SiO2-nanoparticles. To explain the size effect in relating to the STE PL shift, a que...
متن کاملEffect of variation of specifications of quantum well and contact length on performance of InP-based Vertical Cavity Surface Emitting Laser (VCSEL)
Abstract: In this study, the effects of variation of thickness and the number of quantumwells as well as the contact length were investigated. In this paper, a vertical cavity surfaceemitting laser was simulated using of software based on finite element method. Thenumber of quantum wells was changed from 3 to 9 and the results which are related tooutput power, resonance ...
متن کاملZSM-5 Zeolite As Host Material for Semiconductor Nanoparticles
This work describes the optical and structure properties of nickel sulfide and cobalt sulfide nanoparticles in ZSM-5 zeolite. The samples were obtained by sulfidation of the Ni2+ and Co2+ ion-exchange ZSM-5 zeolites in a Na2S solution at room temperature. The optical properties of the samples were studied by UV-visible spectroscopy. Their crystalline structure and morphology were studied by X-r...
متن کامل